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Abstract The general nonlinear intrinsic equations
of motion of an elastic composite beam are solved
in order to obtain the elasto-dynamic response of a
rotating articulated blade. The solution utilizes the
linear Variational-Asymptotic Method (VAM) cross-
sectional analysis, together with an improved damped
nonlinear model for the rigid-body motion analysis of
helicopter blades in coupled flap and lead-lag motions.
The explicit (direct) integration algorithm implements
the perturbation method in order to solve the tran-
sient form of the nonlinear intrinsic differential equa-
tions of motion and obtain the elasto-dynamic behav-
ior of an accelerating composite blade. The specific
problem considered is an accelerating articulated he-
licopter blade of which its motion is analyzed since it
starts rotating from rest until it reaches the steady-state
condition. It is observed that the steady-state solution
obtained by this method compares very well with other
available solutions. The resulting simulation code is a
powerful tool for analyzing the nonlinear response of
composite rotor blades; and for serving the ultimate
aim of efficient noise and vibration control in heli-
copters.
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Nomenclature
A cross-sectional area of the undeformed

beam in x2–x3 plane
e1 [1 0 0 ]T
Fi elements of the column matrix of internal

forces
f applied forces per unit length
g determinant of the metric tensor in

curvilinear coordinates
H sectional angular momenta
i2, i3 cross-sectional mass moment
i23 cross-sectional product of inertia
K.E. kinetic energy function
K deformed beam curvature vector = k + κ̄

k undeformed beam curvature vector
l length of the beam
Mi elements of the column matrix of internal

moments
m applied moments per unit length
N number of nodes
P sectional linear momenta
S stiffness matrix
t time
V velocity field
xi global system of coordinates
x1 axis along the beam
x2 and x3 cross-sectional axes
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x̄2 and x̄3 offsets from the reference line of the
cross-sectional mass center

γ [γ11 2γ12 2γ13 ]T
� identity matrix
δq̄ virtual displacement vector
δψ̄ virtual rotation vector
κ1 elastic twist
κ i elastic bending curvatures (i = 2,3)
μ mass per unit length
ρ mass density
Ω angular velocity
(•̆) perturbations in space

(

˘

•) perturbations in time

(•)′ ∂(•)
∂x1

(•̇)
d(•)
dt

(δ•̄) overbar indicates that it need not be the
variation of a functional

(•̂) the discrete boundary value of quantity (•)

(•̃)ij −eijk(•)k

〈•〉 ∫
A
(•) dx2 dx3

〈〈•〉〉 〈(•)
√

g〉 = ∫
A
(•)

√
g dx2 dx3,√

g = 1 − x2k3 − x3k2

1 Introduction

Helicopter, with its capability of vertical take-off and
landing is a crucial means of aerial transportation. The
expansion of the domain of application of helicopters,
however, has been hampered by a few serious con-
straints. Among them is the relatively poor ride qual-
ity associated with high levels of vibration and noise.
Vibration can result in a low fatigue life of structural
components, and hence, increase the operating costs.
Furthermore, noise and vibration have severe environ-
mental consequences that have limited the range of
application and the velocity of helicopters. Reducing
noise and vibration is a major goal in the design of
next generation helicopters. Achieving this aim, how-
ever, requires the development of the necessary and
numerically efficient analytical and simulation tools.

Analysis of blade models can be developed us-
ing three dimensional (3-D) finite-elements method
(FEM) models. However, modeling initially twisted
and curved active rotor blades using 3-D FEM is ex-
tremely expensive. Also, for preliminary design and
for control synthesis, this approach is quite computa-
tionally intensive. As an alternative, a helicopter rotor

blade can be modeled as a slender composite beam.
The beam model of a helicopter blade is deemed to be
an efficient alternative [16].

In the past two decades, research has been focused
on the analysis of anisotropic composite beams using
the Variational-Asymptotic Method (VAM)—an ex-
cellent review of which can be found in Hodges [15].
VAM, as a powerful method for solving a variety of
beam problems, was first introduced in Berdichev-
sky [1]. Using it is computationally more efficient than
preparing a complete 3-D model of the beam. VAM
starts from the elastic energy functional of the beam.
It solves problems that can be formulated as minimiza-
tion of a functional (e.g. finding the stationary points
for the energy functional) and have an inherently small
dimension (e.g. beams, plates and shells). The solution
has the common advantage of asymptotic methods of
being mathematically well-grounded with no ad hoc
assumptions about displacement or stress fields [15].
Interestingly, there are no theoretical restrictions on
the geometry of the cross section or on the materials of
the beams for which VAM can be applied. It is espe-
cially proper for realistic modeling of initially curved
and twisted anisotropic beams (like rotor blades).

VAM reduces the 3-D geometrically nonlinear elas-
ticity problem of composite rotating blades to a non-
linear 1-D analysis involving the solution of the non-
linear intrinsic differential equations of motion of a
beam along its span. This 1-D analysis utilizes the
cross-sectional properties obtained by a 2-D analy-
sis. The 2-D analysis results are the cross-sectional
stiffness and mass matrices as well as the warping
functions. These results are then used in all further
3-D analyses of the rotating blade without the need
to repeat the 2-D analysis. VAM is ideal for simulat-
ing the response of helicopter rotor blades which are
laterally flexible and usually operate in the nonlinear
range [15].

VAM was applied, in Berdichevsky et al. [2], for
the analysis of thin-walled closed anisotropic cross-
section beams to obtain closed-form solution of the
4×4 stiffness matrix. Later, in Shang and Hodges [19],
a nonlinear 1-D solution was performed and a solution
for the intrinsic equations of a beam was presented.
The obtained results were compared with the available
experimental data given in Sharpe [20].

In Hodges et al. [14], VAM was used in order to
analyze the response of initially curved and twisted
composite beams. Solutions for the nonlinear static
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deformation and the linear free vibration about the
static state of deformation were presented. Results
were compared with the published exact solutions for
isotropic beams and also with available experimental
data for rotating isotropic and composite beams with
swept tips. In both cases, good correlations were ob-
served.

For certain simple cases like isotropic beams with
relatively simple cross-sectional geometries, the stiff-
ness constants can be calculated in closed form. For
complex cross-sections made of composites, how-
ever, a 2-D FEM discretization has been introduced
which implements the VAM cross-sectional analysis
and minimizes the 2-D elastic energy functional. This
FEM code is called the Variational Asymptotic Beam
Sectional Analysis program (VABS) and was intro-
duced by Hodges et al. [13].

The implementation of actuator and sensor ele-
ments in beams in order to build smart beams gener-
ated new problems that have been tackled by Cesnik
and his co-workers. In Cesnik and Shin [6], an asymp-
totic formulation for analyzing multi-cell composite
helicopter rotor blades with integral anisotropic active
plies was presented. This work includes both the cross-
sectional and the 1-D analyses. In Cesnik and Ortega-
Morales [3], the VAM 2-D analysis was applied to in-
clude the effect of an embedded active element in a
structure. An extended version of the same paper is
Cesnik and Ortega-Morales [4].

The results of the VAM cross-sectional analysis
were validated in Yu et al. [21]. In this paper, VAM re-
sults for elliptical, channel and triangular prism bars,
as well as box and I-beams were compared against
other methods. Furthermore, it was demonstrated that
although the application of VABS is restricted to beam
problems, it provides a level of accuracy which is com-
parable to that of standard 3-D finite-element codes,
but with far less computing and processing require-
ments.

In Yu and Hodges [22], VABS solutions were com-
pared with those of the 3-D elasticity solution. Identi-
cal results were reported for beams with elliptical and
rectangular cross sections. The authors concluded that
VAM, which is the mathematical foundation of VABS,
is a valid methodology and it can be used to avoid dif-
ficulties in dealing with 3-D elasticity; while obtaining
results that are coincident with the exact solutions.

Recently, Ghorashi and Nitzsche [10] presented
an implicit (indirect) structural algorithm to calculate

the steady-state response of composite hingeless rotor
blades. First the corresponding form of the intrinsic
equations is obtained in the form of a boundary value
problem. This problem is then converted into a series
of initial value problems where the unknown initial
conditions are calculated through an iterative process
using the Newton–Raphson method. The solution is
repeated and when a convergence criterion is satisfied,
the correct solution of the boundary value problem and
the steady-state response of the blade are obtained. In
Ghorashi [11] and Ghorashi and Nitzsche [12], this
method was extended to the dynamic analysis of hin-
geless rotating blades.

In the present paper, the method used in Ghorashi
and Nitzsche [12] is applied to hinged rotating beams.
First a review of the analysis of rigid articulated rotat-
ing blades having flap and lead-lag hinges is presented.
The corresponding equations of motion are valid at
constant rotor angular velocity and for the rectilinear
motion of the helicopter. These equations are then ex-
panded in order to include hinge offset, aerodynamics
and nonlinear coupling. Next, the elastic articulated
rotating blades are considered and their root boundary
conditions are formulated by the solution of the rigid
articulated blade. Having done that, the root bound-
ary condition is used together with the elastic rotat-
ing blade formulation in order to solve the elastic ar-
ticulated rotating blade problem. The numerical solu-
tion utilizes a finite-difference technique on both time
and space domains for calculating the transient elasto-
dynamic response.

2 Euler and extended Euler equations for rigid
rotating blades

A typical hinge arrangement for an articulated blade
is shown in Fig. 1. The use of these hinges in order to
reduce the induced moments has been a main develop-
ment in the manufacture of helicopters [7].

To analyze the dynamics of rigid articulated blades,
Euler or Extended Euler equations can be utilized. For
a rigid body which rotates about a fixed point O the
moment equations of motion about O using a system
of reference attached to the rigid body and coincident
with its principal axes of inertia are well known to be
∑

Mx = Ixxω̇x − (Iyy − Izz)ωyωz (1)
∑

My = Iyyω̇y − (Izz − Ixx)ωzωx (2)
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Fig. 1 Typical hinge arrangement [7]

Fig. 2 Articulated blade having offset hinges [7, p. 363]

Fig. 3 Schematic presentation of the horizontal plane of Fig. 2
with O on the shaft axis and P at the hinge location at the root
of the blade

∑
Mz = Izzω̇z − (Ixx − Iyy)ωxωy (3)

Equations (1)–(3) are the Euler’s equation of mo-
tion for a rotating rigid body and are applicable to ro-
tating articulated blades with no hinge offset.

For non-zero hinge offset illustrated in Fig. 2 and
modeled in Fig. 3, the fixed point O (on the shaft of the
rotor about which the blade rotates) is not on the hinge
location P (at the root of the blade) and the hinge off-

Fig. 4 Single flapping blade [7]

set is OP. In this case, following the procedure given
in Done and Balmford [7], the moment equations of
motion about P using a system of reference attached
to the rigid blade with center of gravity at

�ρ = xGî, yG = 0, zG = 0 (4)

and coincident with its principal axes of inertia would
be
∑

MPx = Ixxω̇x − (Iyy − Izz)ωyωz (5)
∑

MPy = Iyyω̇y − (Izz − Ixx)ωzωx − mxGaPz (6)
∑

MPz = Izzω̇z − (Ixx − Iyy)ωxωy + mxGaPy (7)

These are the ‘extended’ Euler equations adapted
for the case of a rotating blade with hinge offset and
can be used for deriving the equations of motion of a
rigid articulated blade in flapping, lagging, and feath-
ering.

3 Nonlinear coupled motions of rigid articulated
blade

The blades of an articulated rotor have two primary
degrees of freedom: flap and lead-lag, which can take
place about their corresponding hinges. These hinges
are used in order to reduce the root blade loads, since
at the hinge moments must be zero.

3.1 Coupled flapping and lead-lag equation
considering hinge offset

Figure 4 illustrates a rotating blade with a flap hinge
mounted at distance eR from the axis of rotation. The
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Fig. 5 Blade with an offset
lead-lag hinge [18, p. 177]

coordinate system is attached to the blade with its ori-
gin at the hinge and the axes aligned with the principal
directions of inertia of the blade. The flap angle β is
measured relative to a plane perpendicular to the shaft
axis and its positive sense is in the negative y direction
(flapping up).

Figure 5 illustrates a lead-lag hinge. This hinge is
parallel to the shaft axis and the lead-lag angle ξ rep-
resents a change of the blade angle in the plane of the
hub. The positive direction of the lead-lag angle is de-
fined as the one for a backward moving blade. Thus,
the ‘lagging’ direction (opposite to the shaft angular
velocity Ω) is considered positive.

If the lead-lag and the flap motions act at the same
time, the angular velocity of the blade in the blade co-
ordinate system would be

�ω = (Ω sinβ cos ξ)î + (Ω sinβ sin ξ − β̇)ĵ

+ (Ω cosβ − ξ̇ )k̂ (8)

For constant Ω , depicted by Ω ss, the acceleration
of the hinge point P in the hub coordinate system can
be transformed to the blade coordinate system result-
ing in

�a = eRΩ2(− cosβ cos ξ î − cosβ sin ξ ĵ + sinβk̂)

(9)

Substituting (8) and (9) into (7), assuming β and ξ

to be small to ignore the second-order terms, and using
a mechanical lag damper result in

ξ̈ + Cξ ξ̇ + ν2
ξ Ω2ξ + 2Ωββ̇ = − 1

Izz

∑
MPz,

ν2
ξ = mxGneR

2

Izz

(10)

In (10) Mz is mainly provided by the drag forces.

To obtain the lag-coupled flap equation, (8) and (9)

may now be substituted into (6). For small flap and

lead-lag angles one obtains

β̈ + Ω2
(

1 + mxGneR
2

Iyy

)

β − Ω(2ξ̇β + β̇ξ )

= − 1

Iyy

∑
MPy (11)

This is a generalization of the following equation

stated on pp. 394 and 653 of Johnson [17] and p. 197

of Leishman [18]:

β̈ + Ω2ν2
ββ − 2Ωξ̇β = − 1

Iyy

∑
MPy,

ν2
β = 1 + mxGneR

2

Iyy

(12)

It should be noted that the flap and the lead-lag

equations of motion (10) and (11) are nonlinearly cou-

pled and linearizing decouples them. Using the az-

imuth angle of the blade as the independent variable,

(10) and (11) would convert into

d2β

dψ2
+
(

1 + mxGneR
2

Iyy

)

β −
(

2β
dξ

dψ
+ ξ

dβ

dψ

)

= − 1

Ω2Iyy

∑
MPy (13)

d2ξ

dψ2
+ Cξ

Ωss

dξ

dψ
+
(

mxGneR
2

Izz

)

ξ + 2β
dβ

dψ

= − 1

Ω2
ssIzz

∑
MPz (14)
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3.2 Case study: undamped rigid articulated blade in
hover

Figure 6 illustrates a blade modeled as a prismatic
member with a solid rectangular section made of a ho-
mogeneous isotropic material for which

A = 0.02 m2, ρ = 1770 kg/m3 (15)

The hinge offset can be assumed to be

xGn = 0.48, e = 0.04, R = 1.04 m (16)

Fig. 6 The geometry of the rotating blade and the coordinate
axes

For a steady-state shaft angular velocity of Ωss =
100 rad/s and moments My = −1000 N m, Mz =
−10 N m the coupled flap-lag equations without in-

cluding the aerodynamic damping in flap and the me-

chanical damper in lead-lag would be

β̈ + (100)2(1 + 0.0621)β − 100(2ξ̇β + β̇ξ )

= 1000

11.8295
(17)

ξ̈ + 0.0617 × (100)2ξ + 200ββ̇

= 10

11.9180
(18)

Figure 7 illustrates the results. In this figure, so-

lutions of (17) and (18) are labeled, ‘present’. The

‘Leishman’ label corresponds to the solution of (12)

for the numerical values of the present case and the

‘Uncoupled’ solution is the solution of (17) and (18)

when the three nonlinear terms are ignored. It is seen

that the flap motion has a 1 per rev frequency, as ex-

pected, and the lead-lag response is much slower. In

order to see the results more clearly, zoomed views

have been plotted in Fig. 8.

Fig. 7 Time history
diagrams for lead-lag and
flap motions
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Fig. 8 Time history
diagrams for lead-lag and
flap motions (Fig. 7
zoomed)

4 Aerodynamic damping in rigid articulated
blades

4.1 Aerodynamic damping effect

In forward flight, by ignoring the free-stream veloc-
ity and axial climbing, only the effects of blade pitch,
flap motion and the induced velocity field would re-
main. Therefore, the lift force per unit length would
be [18, p. 179]

L = 1

2
ρU2

T cCLα

(

θ − β̇r

UT

− νi

UT

)

(19)

Ignoring the hinge offset, and using the Lock number
defined as

γ = ρcCLαR4

Iyy

(20)

The flapping equation with pitch and aerodynamics
would be

d2β

dψ2
+
(

γ

8

)
dβ

dψ
+ β = γ

8

(

θ − 4λi

3

)

(21)

4.2 Hinge offset effect on aerodynamically damped
flap motion

So far the contributions of hinge offset and aerody-
namic forces on the flap motion have been considered
separately. Now, the combined effect of these two fac-

tors on this motion is studied. Recalling (13) and (20)
and utilizing

−
∑

MPy =
∫ R

eR

L(r − eR)dr (22)

One obtains

d2β

dψ2
+
(

γ

8
(1 − e)3

(

1 + 1

3
e

))
dβ

dψ

+
(

1 + mxGneR
2

Iyy

)

β −
(

2β
dξ

dψ
+ ξ

dβ

dψ

)

= γ

2

[(
1

4
+ 1

12
e4 − 1

3
e

)

θ

−
(

1

3

(
1 − e3)− 1

2
e
(
1 − e2)

)

λi

]

(23)

Equation (23), when linearized for the especial case of
zero offset reduces to (21) and for zero cyclic pitch or
induced velocity reduces to

d2β

dψ2
+
[

1

8
γ (1 − e)3

(

1 + 1

3
e

)]
dβ

dψ
+ (1 + ε)β = 0

(24)

which is given in Done and Balmford [7].
So, (14) and (23) are the general set of flap and

lead-lag equations of motion where the effects of
hinge offset, aerodynamic damping and nonlinear cou-
pling have all been taken into account.
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Fig. 9 Time history
diagrams of flap and
lead-lag with aerodynamic
damping included

4.3 Case study: articulated blade model with
aerodynamic damping

Using (14) and (23), and recalling the case study given
in Sect. 3.2 with γ = 8, and a collective pitch angle of
2◦, the set of nonlinear flap and lead-lag equations of
motion become,

β̈ + 89.6β̇ + (100)2(1 + 0.0621)β − 100(2ξ̇β + β̇ξ )

= 330.45 (25)

ξ̈ + 0.0617 × (100)2ξ + 200ββ̇ = 10

11.9180
(26)

Figure 9 illustrates the solution where the effect of
damping on the flap motion and the formation of the
coning angle are evident. It is seen, however, that the
effect of aerodynamic damping of the flap motion is
not significant on the lead-lag motion. Figure 10 illus-
trates a zoomed view of Fig. 9.

To control the lead-lag motion, mechanical dampers
can be implemented. The equations of motion would
then be modified as

β̈ + 89.6β̇ + (100)2(1 + 0.0621)β − 100(2ξ̇β + β̇ξ )

= 330.45 (27)

ξ̈ + 10ξ̇ + 0.0617 × (100)2ξ + 200ββ̇ = 10

11.9180
(28)

Figures 11 and 12 illustrate the corresponding so-
lution where the damping effect on both motions is
evident.

5 Elastic analysis using the variational asymptotic
method

Having analyzed the dynamics of rigid articulated
blades, the next step is the inclusion of elasticity in
the analysis. To this end, using the logic of the Varia-
tional Asymptotic Method (VAM), a nonlinear elastic
1-D analysis along the rotating blade is needed which
utilizes the results of the cross-sectional analysis (per-
formed by VABS). This analysis implements the fol-
lowing equations.

5.1 Intrinsic equations of motion

For a blade modeled as a generalized Timoshenko
beam, application of the Hamilton’s principle results
in Hodges [15]

∫ t2

t1

∫ L

0

{
δq̄T

(
F ′ + K̃F + f − Ṗ − Ω̃P

)

+ δψ̄T
[
M ′ + K̃M + (ẽ1 + γ̃ )F + m − Ḣ

− Ω̃H − Ṽ P
]}

dx1 dt
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Fig. 10 Time history
diagrams of flap and
lead-lag with aerodynamic
damping included (Fig. 9
zoomed)

Fig. 11 Time history
diagrams of flap and
lead-lag with aerodynamic
damping and lead-lag
dampers included

=
∫ L

0

[
δq̄T (P̂ − P) + δψ̄T (Ĥ − H)

]∣
∣t2
t1

dx1

−
∫ t2

t1

[
δq̄T (F̂ − F) + δψ̄T (M̂ − M)

]∣∣L
0 dt

(29)

The corresponding Euler–Lagrange equations
are

F ′ + K̃F + f = Ṗ + Ω̃P (30)

M ′ + K̃M + (ẽ1 + γ̃ )F + m = Ḣ + Ω̃H + Ṽ P

(31)
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Fig. 12 Time history
diagrams of flap and
lead-lag with aerodynamic
damping and lead-lag
dampers included (Fig. 11
zoomed)

where the total curvature and twist of the blade is the
summation of their initial values and the added curva-
ture and twist as a result of elastic deformation,

K = k + κ (32)

Equations (30) and (31) are the nonlinear intrinsic
equations of motion of a beam. Here, F and M are col-
umn vectors of internal forces and moments, respec-
tively. The first element of F is the axial force and
the second and third elements are the shear forces, ex-
pressed in the deformed beam basis. Similarly, the first
element of M is the twisting moment and the second
and third elements are bending moments.

The generalized sectional linear and angular mo-
menta P and H are conjugate to motion variables by
derivatives of the kinetic energy function,

P =
(

∂K.E.

∂V

)T

(33)

H =
(

∂K.E.

∂Ω

)T

(34)

5.2 Intrinsic kinematical equations

The nonlinear intrinsic kinematical equations of a
beam that should be solved together with (30) and (31)
are [15]

V ′ + K̃V + (ẽ1 + γ̃ )Ω = γ̇ (35)

Ω ′ + K̃Ω = κ̇ (36)

5.3 Momentum-velocity equations

The momentum-velocity equations are [15]

{
P

H

}

=
[

μ� −μ ˜̄ξ
μ ˜̄ξ i

]{
V

Ω

}

(37)

where

ξ =

⎧
⎪⎨

⎪⎩

0

x2

x3

⎫
⎪⎬

⎪⎭
(38)

˜̄ξ =
⎡

⎢
⎣

0 −x̄3 x̄2

x̄3 0 0

−x̄2 0 0

⎤

⎥
⎦ (39)

also

i = 〈〈ρ(ξT ξ.� − ξξT
)〉〉=

⎡

⎣
i2 + i3 0 0

0 i2 i23

0 i23 i3

⎤

⎦ (40)

and

μ = 〈〈ρ〉〉= 〈ρ√
g
〉

(41)
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Fig. 13 Nodes along the blade and the coordinate system of the undeformed blade

where

〈
(•)
〉=

∫

A

(•) dx2 dx3 (42)

and g is the determinant of the metric tensor, express-
ible as

√
g = 1 − x2k3 − x3k2 (43)

5.4 Constitutive equations

The 2-D analysis performed by VABS results in the
warping functions as well as the stiffness matrix used
in the constitutive equations,

{
γ

κ

}

=
[

R Z

ZT T

]

︸ ︷︷ ︸
S−1

{
F

M

}

(44)

{
F

M

}

=
[

A B

BT D

]

︸ ︷︷ ︸
S

{
γ

κ

}

(45)

Equations (30), (31), (32), (35), (36), (37) and (44)
form a system of four nonlinear partial differential
equations and five linear vector equations. They have
a total of nine unknown vectors: F, M, V, Ω , P , H ,
γ , κ , and K , at every node along the beam and every
time step. In what follows, these equations are solved
using finite differences in time and space, as well as
the perturbations method.

Fig. 14 The time–space grid for the numerical solution of a
partial differential equation

6 Formulation of the generic nonlinear term

Figure 13 illustrates the blade which is discretized
by N nodes along its span. The corresponding finite-
difference space-time grid presentation is depicted in
Fig. 14. For a generic variable φ(x, t), one may use
the following convention:

φi = φ(x, t) (46)

where i is the beam node number corresponding to the
position x. At the nodes neighboring (x, t) in Fig. 14,
the same variable can be expressed as

φi+1 = φ(x + �x, t) (47)

φ+
i = φ(x, t + �t) (48)

φ+
i+1 = φ(x + �x, t + �t) (49)



www.manaraa.com

238 M. Ghorashi

where the superscript “+” refers to the next time step.
Using Taylor series expansions,

φ

(

x + �x

2
, t + �t

2

)

= φ

(

x, t + �t

2

)

+ φ′
(

x, t + �t

2

)

× �x

2
(50)

φ

(

x, t + �t

2

)

= φ(x, t) + φ̇(x, t) × �t

2
(51)

and the notation introduced in (46) to (49) one obtains

φ

(

x + �x

2
, t + �t

2

)

= 1

4

(
φ+

i+1 + φ+
i + φi+1 + φi

)+ O
(
�x2,�t2)

(52)

φ′
(

x + �x

2
, t + �t

2

)

= 1

2�x

(
φ+

i+1 − φ+
i + φi+1 − φi

)+ O
(
�x2,�t2)

(53)

φ̇

(

x + �x

2
, t + �t

2

)

= 1

2�t

(
φ+

i+1 − φi+1 + φ+
i − φi

)+ O
(
�x2,�t2)

(54)

Equations (52) to (54) provide second-order ap-
proximate finite-difference expressions for a variable
and its derivatives with respect to time and space. They
have been used in Ghorashi [9] and Esmailzadeh and
Ghorashi [8] to solve a moving load problem. In what
follows, (52) to (54) will be used in order to convert
the system of nonlinear partial differential equations
(30), (31), (35) and (36) into a set of difference equa-
tions.

Consider a generic nonlinear vector term φ̃λ with
the scalar terms φmλn (m = 1 : 3, n = 1 : 3). One may
use perturbations in time and space in order to ex-
press them in terms of the nodal values of variables
φm and λn. For the perturbations in space,

φ+
m,i+1 = φ+

m,i +
�

φm,i+1 (55)

Similarly, for the perturbations in time,

φ+
m,i = φm,i +

�

φm,i (56)

Therefore,

φmλn = 1

16

(
3φm,i + 2

�

φm,i + �

φm,i+1 +φm,i+1
)

× (3λn,i + 2
�

λn,i + �

λn,i+1 +λn,i+1
)

(57)

For small perturbations, (57) reduces to

φmλn = 1

16
× [(φ+

m,i+1 + φ+
m,i

)
(λn,i+1 + 3λn,i)

+ (λ+
n,i+1 + λ+

n,i

)
(φm,i+1 + 3φm,i)

]

+ 1

16
× (φm,i+1λn,i+1 + φm,i+1λn,i

+ φm,iλn,i+1 − 3φm,iλn,i) (58)

Equation (58) is the equation for the generic nonlinear
term.

7 The finite-difference formulation

Using (58) for all of the nonlinear terms in (30), (31),
(35) and (36), one obtains

Aiq
+
i + Biq

+
i+1 = Ji (59)

where the right-hand side of (59) contains the cur-
rently known quantities, and the column state vector
q has 24 elements:

q = [F1 F2 F3 M1 M2 M3 V1 V2 V3 Ω1 Ω2 Ω3

P1 P2 P3 H1 H2 H3 γ11 2γ12 2γ13 κ1 κ2 κ3]T
(60)

Ai and Bi are 24 × 24 matrices and qi and Ji are col-
umn vectors. Expressions for Ai , Bi and Ji have been
given in the appendices of Ghorashi [11] and Ghorashi
and Nitzsche [12].

Equation (59) is composed of 24 algebraic equa-
tions with 48 unknowns and as such it is not solvable
on its own. To solve the problem, one should utilize
initial and boundary conditions as was done for a sim-
ilar formulation in Ghorashi [9] and Esmailzadeh and
Ghorashi [8]. Using (59),

q+
1 = M tot

N−1.q
+
N + T tot

N−1 (61)
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where

M tot
N−1 = a1a2a3a4 . . . aN−1, ai = −A−1

i Bi

T tot
N−1 = b1 + a1b2 + a1a2b3 + · · ·

+ a1a2a3 . . . aN−2bN−1, bi = A−1
i Ji

(62)

If the boundary conditions at the two nodes 1 and N

are known, one can then solve (61) for the remaining
unknowns at these two nodes. Then, (59) can be used
to provide the solution at all of the interior nodes.

8 Elastic articulated composite rotating blade

In Sects. 4 to 7 the behavior of rigid articulated blades
as well as formulating a solution algorithm for the
analysis of elastic rotating blades were discussed. The
stage is now set for the analysis of elastic articu-
lated blades. While for a rigid blade one can calcu-
late the flap and lead-lag motions by solving the set
of two coupled nonlinear differential equations, the
same is not easily achievable for elastic blades. The
main problem is that instead of having a purely ini-
tial value problem, one should solve a combined ini-
tial and boundary value problem whose root boundary
conditions depend on the unknown solution of the dif-
ferential equations of motion.

In this paper, in order to circumvent the mentioned
problem, the angular velocity boundary conditions of
the elastic blade at its root are taken from the corre-
sponding solution for its rigid articulated blade coun-
terpart. Therefore, first the rigid-body motions of lead-
lag and flap are obtained by using rigid-body dynam-
ics of the blade. Then these motions are utilized for
calculating the angular velocity boundary conditions
of the elastic blade at its root. Having done that, the
stage would be set for solving the nonlinear elastic
problem of the rotating blade using the perturbation
method discussed before.

The logic behind this modeling lies in the fact that
elastic deformations are much smaller than rigid-body
motions. Therefore, root motion (which provides the
boundary conditions for the blade) can be calculated
by ignoring elastic deformations and momentarily as-
suming that the blade is rigid.

8.1 Solution algorithm for the nonlinear analysis of
elastic articulated blades

Combining the algorithms for analyzing the rigid ar-
ticulated blade and the elastic hingeless blade prob-

lems generates an algorithm which is suitable for an-

alyzing elastic articulated blades. The solution for the

motion of the blade would then be performed in the

following steps.

Step 1: In this step the elastic blade, initially mod-

eled as hingeless, is accelerated from rest to its full

speed (the steady-state speed).

Step 2: The blade continues to rotate at full speed

and experiences a steady-state condition while its root

is still clamped. The purpose of this part is to obtain

an idea of the stability of the response of the blade af-

ter the acceleration phase and before the aerodynamic

loads are applied and the hinges are activated.

Step 3: While the blade is still rotating at full speed,

the flap and lead-lag hinges are activated and at the

same time the blade is subjected to aerodynamic load-

ings. To simulate this phase of motion, first the rigid-

body code is run and the flap and lead-lag solutions are

calculated by solving (14) and (23). Then the angular

velocity components of the root of the elastic blade can

be obtained by (8). Having obtained this important un-

known, one may apply the blade boundary conditions

into (61) to get,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F+
M+

⎧
⎨

⎩

0
eRΩss

0

⎫
⎬

⎭
⎧
⎨

⎩

Ωss sinβ cos ξ

Ωss sinβ sin ξ − β̇

Ωss cosβ − ξ̇

⎫
⎬

⎭

⎧
⎨

⎩

0
μeRΩss

0

⎫
⎬

⎭
⎧
⎪⎨

⎪⎩

(i2 + i3)Ωss sinβ cos ξ

i2(Ωss sinβ sin ξ − β̇)

i3(Ωss cosβ − ξ̇ )

⎫
⎪⎬

⎪⎭

γ +
κ+

⎫
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= M tot
N−1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0

V +
Ω+
P +
H+

0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
N

+ T tot
N−1 (63)

Equation (63) should now be solved for the remain-
ing unknowns at the two nodes. Having obtained the
boundary unknowns at nodes 1 and N , one may now
use (59) in order to calculate the unknowns at all inte-
rior nodes, by starting from either node 1 or node N .
Choosing node N as the starting point in order to
march toward node 1, the following may be used:

q+
i = −A−1

i Biq
+
i+1 + A−1

i Ji (64)

or,

q+
i = aiq

+
i+1 + bi (65)

In this way, having already obtained q+
N using (65),

one may calculate q+
N−1 and then continue to find

q+
N−2 and so on until eventually another approximate

solution for q+
1 is obtained. This result may then be

compared with the q+
1 calculated by (61) to check the

accuracy of the solution procedure and the impact of
round-off errors.

8.2 Case study: elastic articulated blade in hover

The blade discussed in Sects. 3.2 and 4.3 is now ana-
lyzed when it is modeled as an elastic part. To obtain
parameters of the elastic model first using VABS the
inertia and flexibility matrices are calculated as fol-
lows:

i =
⎡

⎢
⎣

8.333 0 0

0 1.6667 0

0 0 6.6667

⎤

⎥
⎦× 10−5 × 1770 (66)

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.358 × 1012 0 0 0 0 0

0 0.1373 × 1012 0 0 0 0

0 0 0.1074 × 1012 0 0 0

0 0 0 0.354 × 109 0 0

0 0 0 0 0.298 × 109 0

0 0 0 0 0 0.119 × 1010

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(67)

The blade is assumed to have a hinge offset ratio of
e = 0.04 and a steady-state shaft angular velocity of
100 rad/s. The accelerating part of the motion lasts
for 0.5 s, during which the blade is still clamped at its
root and it accelerates to full speed. The second part
of the motion lasts for 0.1 s in which the blade contin-
ues to rotate at the steady-state speed while the root is
still clamped. Finally, in the last 0.5 s of the motion,
while the blade is still rotating at its full speed, the
flap and lead-lag hinges are activated and at the same
time the blade is subjected to two moment pulses in
flap and lead-lag directions. One moment corresponds
to the application of a collective pitch and the second
one represents the drag force in the lead-lag motion.

The corresponding equations of motion for the rigid-
body motion of the blade in flap and lead-lag would
be

β̈ + 89.6β̇ + (100)2(1 + 0.0621)β − 100(2ξ̇β + β̇ξ )

= 0.0845 (68)

ξ̈ + 0.0617 × (100)2ξ + 200ββ̇ = 0.0839 (69)

The lead-lag motion here has no mechanical damper.
Using the solution of (68) and (69) in the algorithm
discussed in Sect. 8, the complete elasto-dynamic so-
lution of the elastic articulated blade problem has been
obtained and illustrated in Figs. 15–22.
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Fig. 15 Time history
diagrams of lead-lag and
flap motions

Fig. 16 Time history
diagrams of shaft angular
velocity and the M3
bending moment induced in
the blade at its root

The flap and lead-lag motions have been plotted in
Fig. 15. This figure reveals that even though the flap
and lead-lag motions are coupled, imposing damping
on the flap motion only has negligible effect on the
lead-lag motion.

The gentle variations of the root angular velocity
and the resulting root moment and shear force can be

seen in Fig. 16. As expected, maximum dynamic mo-
ment and shear force values occur when the angular
acceleration of the blade is maximal.

The moment diagrams in Fig. 17 illustrate the in-
duced moments at the root of the blade after activating
the hinges. The values are seen to be small and always
oscillating around zero. This is an indication of the ac-
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Fig. 17 Time history
diagrams of blade internal
moments components at its
root

Fig. 18 Time history
diagrams of blade internal
force components at its
root. The obtained result for
F1 (solid line) and the
linear solution in (70)
(dashed line)

curacy of the solution and the correct hinge modeling.
This check point provides a very important verification
tool and is an effective benchmark.

Figure 18 illustrates the time history diagram of
the induced internal forces at the root of the blade. It
can be observed that the obtained result for F1 (solid
line) is very close to that of the approximate solu-

tion

F1 = 1

2
ρAΩ2

3

(
L2 − x2

1

)
(70)

which is plotted as a dashed line.
In Fig. 19, the time history diagrams of various

components of angular velocity are illustrated. Among
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Fig. 19 Time history
diagrams of blade angular
velocity components at its
root

Fig. 20 Variation of blade
internal force components
along its span at t = 0.85 s

them, the convergence of Ω2 to zero corresponds to
the convergence of the flap angle to a constant which
is the coning angle.

The variation of the internal forces, induced mo-
ments and angular velocities along the span of the
blade at t = 0.85 s (while hinges are active) are

plotted in Figs. 20, 21 and 22, respectively. Figure
20 shows that the major force generated along the
blade is due to the centrifugal force. Also, in Figs.
20 and 21, the free boundary conditions at the tip of
the blade are observed to have been satisfied, as ex-
pected.
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Fig. 21 Variation of blade
internal moment
components along its span
at t = 0.85 s

Fig. 22 Variation of blade
angular velocity
components along its span
at t = 0.85 s

8.3 Case study: damped elastic composite airfoil

Consider the case of a composite airfoil similar to
what is discussed in Cesnik et al. [5]. The UM/VABS
input file for this case is among the examples pro-
vided with the software. The airfoil is a NACA 4415
airfoil with double-cells and has a spar located at

38.6% chord from the leading edge as is shown in
Fig. 23.

The position of the centroid is at y = 0.3084 m
and z = 0.06210 m. Figure 24 illustrates the ply lay-
up definitions and orientation angles on the section.
A passive 0◦ ply is used to enclose the cross section.
The inner layers consist of 90◦, +45◦, −45◦ and 0◦
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Fig. 23 Cross section of
the airfoil

Fig. 24 Ply layups and
orientation angles of the
airfoil cross section [5]

active plies (i.e. [0,+90,+45,−45,0]). The angles
are measured with respect to the axis along the wing
span.

Using the material properties given in Cesnik et al.
[5] and implementing UM/VABS, the stiffness matrix
of the cross section is obtained as

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.12577 × 109 3.615437 × 103 −1.28217 × 104 −1.64732 × 105 −2.168324 × 105 −5.681057 × 106

3.615437 × 103 3.15555 × 108 −4.04582 × 105 −1.0509 × 107 7.05125 × 104 4.33983 × 103

−1.28217 × 104 −4.04582 × 105 2.79485 × 107 −1.06215 × 107 5.81197 × 102 1.08681 × 104

−1.64732 × 105 −1.0509 × 107 −1.06215 × 107 1.75149 × 107 −2.4470 × 103 2.00316 × 103

−2.168324 × 105 7.05125 × 104 5.81197 × 102 −2.4470 × 103 1.39200 × 107 1.16753 × 105

−5.681057 × 106 4.33983 × 103 1.08681 × 104 2.00316 × 103 1.16753 × 105 3.3672 × 108

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Fig. 25 Time history
diagrams of beam internal
moment components at the
root

Fig. 26 Time history
diagrams of shaft angular
velocity and the M3
bending moment induced in
the beam at the root

Figures 25, 26, 27, 28 and 30 illustrate the solution

for the full speed angular velocity of 30 rad/s, a 4%

hinge offset ratio, unit applied moments in the 2 and 3

directions and using

I =
⎡

⎢
⎣

77.255 0 0

0 3.1362 −0.20052

0 −0.20052 74.119

⎤

⎥
⎦× 10−2

9 Conclusions

A direct integration method which utilizes the pertur-
bation method was presented for the elasto-dynamic
analysis of an accelerating articulated composite blade.
The solution involves the application of the Varia-
tional-Asymptotic Method (VAM) and calculation of
the cross-sectional properties of the elastic blade as
well as solving the nonlinear intrinsic differential
equations of motion of the blade. A generalized solu-
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Fig. 27 Time history
diagrams of beam internal
force components at the
root; present solution (solid
line) (70) (dashed line)

Fig. 28 Variation of beam
internal force components
along its span at t = 0.85 s

tion to the coupled rigid-body motion problem of heli-
copter blades in flap and lead-lag was also derived and
used in order to generate the root boundary conditions.
Using this solution, an algorithm was developed and
implemented in order to calculate the transient and the
steady-state solutions of the intrinsic differential equa-
tions of motion including internal forces, moments,

velocities and angular velocities. The specific prob-
lem considered involved an accelerating rotor blade
that started its motion from rest and converged to a
steady-state angular velocity. The solution was shown
to be in good agreement with the linear solution for the
axial force as well as with the imposed boundary con-
ditions. The resulting simulation code is a powerful
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Fig. 29 Time history
diagrams of beam internal
moment components at the
root

Fig. 30 Time history
diagrams of beam angular
velocity components at the
root

tool for analyzing the nonlinear response of composite
rotor blades; and can be used in the future for reach-
ing the ultimate aim of efficient noise and vibration
control of helicopters.
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